Search results

1 – 5 of 5
Article
Publication date: 1 November 1996

Dariusz Gawin, Bernhard A. Schrefler and M. Galindo

Presents a fully coupled numerical model to simulate the slow transient phenomena involving heat and mass transfer in deforming partially saturated porous materials. Makes use of…

1488

Abstract

Presents a fully coupled numerical model to simulate the slow transient phenomena involving heat and mass transfer in deforming partially saturated porous materials. Makes use of the modified effective stress concept together with the capillary pressure relationship. Examines phase changes (evaporation‐condensation(, heat transfer through conduction and convection, as well as latent heat transfer. The governing equations in terms of gas pressure, capillary pressure, temperature and displacements are coupled non‐linear differential equations and are discretized by the finite element method in space and by finite differences in the time domain. The model is further validated with respect to a documented experiment on partially saturated soil behaviour, and the effects of two‐phase flow, as compared to the one‐phase flow solution, are analysed. Two other examples involving drying of a concrete wall and thermoelastic consolidation of partially saturated clay demonstrate the importance of proper physical modelling and of appropriate choice of the boundary conditions.

Details

Engineering Computations, vol. 13 no. 7
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 1 November 2002

Bernhard A. Schrefler, Carmelo E. Majorana, Gabriel A. Khoury and Dariusz Gawin

This paper presents the physical, mathematical and numerical models forming the main structure of the numerical analysis of the thermal, hydral and mechanical behaviour of normal…

2502

Abstract

This paper presents the physical, mathematical and numerical models forming the main structure of the numerical analysis of the thermal, hydral and mechanical behaviour of normal, high‐performance concrete (HPC) and ultra‐high performance concrete (UHPC) structures subjected to heating. A fully coupled non‐linear formulation is designed to predict the behaviour, and potential for spalling, of heated concrete structures for fire and nuclear reactor applications. The physical model is described in more detail, with emphasis being placed upon the real processes occurring in concrete during heating based on tests carried out in several major laboratories around Europe as part of the wider high temperature concrete (HITECO) research programme. A number of experimental and modelling advances are presented in this paper. The stress‐strain behaviour of concrete in direct tension, determined experimentally, is input into the model. The hitherto unknown micro‐structural, hydral and mechanical behaviour of HPC/UHPC were determined experimentally and the information is also built into the model. Two examples of computer simulations concerning experimental validation of the model, i.e. temperature and gas pressure development in a radiatively heated HPC wall and hydro‐thermal and mechanical (damage) performance of a square HPC column during fire, are presented and discussed in the context of full scale fire tests done within the HITECO research programme.

Details

Engineering Computations, vol. 19 no. 7
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 5 May 2015

Raffaella Santagiuliana, Massimo Fabris and Bernhard Aribo Schrefler

The purpose of this paper is to give an explanation of the new data available about surface subsidence above the depleted gas reservoir Ravenna Terra. These data confirm the…

Abstract

Purpose

The purpose of this paper is to give an explanation of the new data available about surface subsidence above the depleted gas reservoir Ravenna Terra. These data confirm the existence after end of exploitation of a reversed subsidence bowl with minimum subsidence above the reservoir, as opposed to conventional subsidence bowls during exploitation which show maximum subsidence in the same location.

Design/methodology/approach

The paper analyses these new data about the existence after end of exploitation of a reversed subsidence bowl. The observed behaviour is reproduced successfully with a fully coupled two phase flow code in deforming reservoir rocks which incorporates a constitutive model for partially saturated porous media.

Findings

The paper provides successful simulations. These allow affirming with confidence that the explanation for the peculiar behaviour is reservoir flooding and partially saturated rock behaviour.

Research limitations/implications

Further research: other case studies where similar behaviour is expected, e.g. Ekofisk.

Practical implications

The paper includes implications for better management of reservoir exploitation schedules to minimize the observed phenomenon.

Originality/value

This paper explains the peculiar behaviour of subsidence above the depleted gas reservoir Ravenna Terra and confirms the conjecture that constitutive behaviour of partially saturated rocks is the origin of the observed phenomenon.

Details

Engineering Computations, vol. 32 no. 3
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 4 January 2013

Francisco Chinesta, Adrien Leygue, Marianne Beringhier, Linh Tuan Nguyen, Jean‐Claude Grandidier, Bernhard Schrefler and Francisco Pesavento

The purpose of this paper is to solve non‐linear parametric thermal models defined in degenerated geometries, such as plate and shell geometries.

Abstract

Purpose

The purpose of this paper is to solve non‐linear parametric thermal models defined in degenerated geometries, such as plate and shell geometries.

Design/methodology/approach

The work presented in this paper is based in a combination of the proper generalized decomposition (PGD) that proceeds to a separated representation of the involved fields and advanced non‐linear solvers. A particular emphasis is put on the asymptotic numerical method.

Findings

The authors demonstrate that this approach is valid for computing the solution of challenging thermal models and parametric models.

Originality/value

This is the first time that PGD is combined with advanced non‐linear solvers in the context of non‐linear transient parametric thermal models.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 23 no. 1
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 1 August 2003

Erwin Stein and Karin Wiechmann

First, a synopsis of the major changes of natural science, mathematics and philosophy within the 17th century shall highlight the birth of the new age of science and technology…

Abstract

First, a synopsis of the major changes of natural science, mathematics and philosophy within the 17th century shall highlight the birth of the new age of science and technology. Based on Fermat's principle of the shortest light‐way and Galilei's first attempt of an approximative solution of the so‐called Brachistochrone problem using a quarter of the circle, Johann Bernoulli published a competition for this problem in 1696, and six solutions were submitted by the most famous scientists of the time and published in 1697, even though the variational calculus was only published in 1744 by Euler for the first time. Especially the analytical solution of Jakob Bernoulli contains already the main idea of Euler's variational calculus, i.e. to vary only one function value at a time using a finite difference method and proceeding to the infinitesimal limit. Also Leibniz' geometric solution is very remarkable, realizing a direct discrete variational method geometrically which was invented numerically much later in the 19th century by Ritz and Galerkin and generalized to the finite element method by introducing test and trial functions in finite subspaces. A new finite element solution of the non‐linear Brachistochrone problem concludes the paper. It is important to recognize that besides the roots of variational calculus also the first formulations of conservation laws in mechanics and their applications originated in the 17th century.

Details

Engineering Computations, vol. 20 no. 5/6
Type: Research Article
ISSN: 0264-4401

Keywords

1 – 5 of 5